The only literature data, which are directly comparable with the present results, are those of Kehiaian et al. (10) for 2,5,8-trioxanonane-*n*-decane. Near x = 0.5, these are about 3% higher than our curve.

Excess enthalpies at 304.15 K have been reported for binary mixtures of 2,5,8-trioxanonane with n-decane and with n-dodecane (11). For equimolar mixtures, these are \sim 250 J mol⁻¹ higher than our results at 298.15 K. In combination with our results, they indicate unrealistically large positive molar excess isobaric heat capacities (\sim 40 J K⁻¹ mol⁻¹), which are in sharp contrast to the small negative values obtained from direct measurements of the heat capacities of mixtures of the same ether with n-heptane (6).

Registry No. 2,5,8-Trioxanonane, 111-96-6; 2,5,8,11,14-pentaoxapentadecane, 143-24-8; n-hexane, 110-54-3; n-decane, 124-18-5; ndodecane, 112-40-3; n-heptane, 142-82-5.

Literature Cited

- (1) Treszczanowicz, T. Bull. Acad. Polon. Sci., Ser. Sci. Chim. 1973, 21. 107
- Kumaran, M. K.; Benson, G. C. J. Chem. Thermodyn. 1986, 18, 27.
 Treszczanowicz, T.; Lu, B. C.-Y. J. Chem. Thermodyn. 1967, 19, 391.
- (4) Kumaran, M. K.; Kimura, F.; Halpin, C. J.; Benson, G. C. J. Chem. Thermodyn. 1984, 16, 687.

- (5) Benson, G. C.; Kumaran, M. K.; D'Arcy, P. J. Thermochim. Acta 1984, 74. 187.
- (6) Kimura, F.; D'Arcy, P. J.; Sugamori, M. E.; Benson, G. C. Thermochim. Acta 1983, 64, 149.
- (7) Treszczanowicz, A. J.; Halpin, C. J.; Benson, G. C. J. Chem. Eng. Data 1982, 27, 321. (8) Treszczanowicz, T.; Lu, B. C.-Y. J. Chem. Thermodyn. 1988, 18,
- 213. (9) Benson, G. C.; Kumaran, M. K.; Treszczanowicz, T.; D'Arcy, P. J.; Halpin, C. J. Thermochim. Acta 1985, 95, 59.
- (10) Kehiaian, H. V.; Sosnkowska-Kehiaian, K.; Hryniewicz, R. J. Chim. Phys. 1971, 68, 922.
- (11) Al-Kafaji, J. K. H.; Booth, C. J. Chem. Soc., Faraday Trans 1 1983, 79. 2695.
- (12) Al-Kafaji, J. K. H.; Ariffin, Z.; Cope, J.; Booth, C. J. Chem. Soc., araday Trans. 1 1985, 81, 223.
- (13) Riddick, J. A.; Bunger, W. B. Technlques of Chemistry Vol. II-
- Organic Solvents; Wiley-Interscience: New York, 1970. (14) Wallace, W. J.; Mathews, A. L. J. Chem. Eng. Data 1964, 9, 267. (15) McGee, R. L.; Wallace, W. J.; Rataiczak, R. D. J. Chem. Eng. Data
- 1963, 28, 305 (16) TRC Thermodynamic Tables — Hydrocarbons; Thermodynamics Re-search Center, Texas A & M University System: College Station, TX, 1986. See Table 23-2-(1.101)-a.
- (17) Tanaka, R.; D'Arcy, P. J.; Benson, G. C. Thermochim. Acta 1975, 11, 163.
- (18) Kimura, F.; Benson, G. C.; Halpin, C. J. Fluid Phase Equilib. 1983, 11, 245.

Received for review September 25, 1987. Accepted March 9, 1988. We are indebted to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support of this work.

Vapor Pressures of Ammonium Bromide + Ammonia and Ammonium Iodide + Ammonia Solutions

Hideki Yamamoto, Seiji Sanga, and Junji Tokunaga*

Department of Chemical Engineering, Faculty of Engineering, Kansai University, Yamate-cho, Suita, Osaka, 564 Japan

Vapor pressures for ammonium bromide + ammonia and ammonium iodide + ammonia solutions were measured in the concentration ranges of 10-65 wt % and 10-75 wt % at various temperatures, respectively. The observed vapor pressures were fitted to Antoine's equation, using the method of least squares. Furthermore, Antoine's constants for both solutions were expressed as fourth-degree functions of concentration of ammonium halides. In addition, vapor pressures for saturated ammonia solutions of ammonium hallde were measured over the temperature range of 0-80 °C. The calculated vapor pressures by these equations at 25 °C were compared with Hunt's data, and good agreement was obtained. Vapor pressure measurements were carried out by using a strain gauge transducer (up to 2.0 MPa), and the accuracy of this measurement was ± 0.001 MPa. The vapor pressures calculated by Antoine's equation agreed with the observed values within a deviation of $\pm 2.7\%$.

Introduction

Reaction products from ammonium halides and liquid ammonia are referred as ammine complexes or ammoniated salts. Recently, these complexes in the liquid phase have been utilized as a working system for chemical energy storage and chemical heat pumps (1, 2, 3).

Table I. Vapor Pressure of Saturated Ammonia Solution of Ammonium Halide

temp, .°C	press., MPa	temp, °C	press., MPa					
NH₄Br−NH ₃ System								
0.5	0.094	47.3	0.456					
5.8	0.115	50.0	0.491					
10.6	0.138	54.5	0.564					
16.0	0.162	59.1	0.647					
20.3	0.190	63.8	0.740					
25.5	0.231	69.0	0.855					
30.9	0.267	73.5	0.967					
34.3	0.294	78.6	1.098					
41.6	0.374	83.2	1.255					
	NH.I-NI	H ₃ System						
0.6	0.043	44.6	0.182					
8.5	0.053	48.3	0.198					
14.5	0.066	50.4	0.212					
16.0	0.074	53.8	0.226					
19.1	0.080	59.0	0.259					
25.0	0.101	60.1	0.261					
28.4	0.110	63.8	0.286					
35.8	0.138	68.9	0.315					
39.6	0.158	82.6	0.469					

Ammonium bromide + ammonia and ammonium iodide + ammonia solutions were valuable as the working system (4). However, the physical properties of these systems, especially the observed values for vapor pressure, were not reported sufficiently. Vapor pressures of these two systems at 25 °C

Table II. Vapor Pressure	e for the	NH ₄ Br-NH ₃ System
--------------------------	-----------	---

	observed values							observed values			
temp,	concn,	press.,	temp,	concn,	press.,	temp,	conen,	press.,	temp,	concn,	press.,
°C	wt %	MPa	°C	wt %	MPa	°C	wt %	MPa	°C	wt %	MPa
0.2	10.20	0.420	0.2	19.80	0.411	0.4	53.30	0.271	0.2	55.35	0.238
8.9	10.24	0.574	8.8	19.83	0.559	8.6	53.39	0.369	8.3	55.43	0.327
10.0	10.25	0.596	10.2	19.84	0.587	9.9	53.40	0.389	9.6	55.45	0.343
15.9	10.29	0.727	16.0	19.86	0.713	15.7	53.47	0.472	15.6	55.52	0.427
20.1	10.32	0.833	20.2	19.90	0.817	20.4	53.55	0.557	20.3	55.59	0.504
25.0	10.35	0.972	25.1	19.93	0.952	25.2	53.63	0.654	25.1	55.67	0.594
30.1	10.38	1.133	29.9	19.96	1.100	29.9	53.72	0.760	29.3	55.75	0.681
35.2	10.41	1.315	35.3	19.99	1.287	34.9	53.83	0.888	34.2	55.86	0.793
39.8	10.44	1.496	39.9	20.01	1.464	40.0	53.96	1.030	39.1	55.98	0.920
44.8	10.49	1.714	44.9	20.04	1.677	44.8	54.10	1.183	44.2	56.12	1.049
		o	0 F		0.001	50.1	54.25	1.329	49.7	56.28	1.231
0.2	31.56	0.407	0.5	36.50	0.391	53.0	54.38	1.438	52.1	56.33	1.314
8.7	31.59	0.551	8.7	36.53	0.522	0.0			<u> </u>		
10.0	31.60	0.576	10.2	36.54	0.555	0.3	58.19	0.203	0.4	62.22	0.156
15.9	31.63	0.701	15.9	36.57	0.665	8.4	58.27	0.284	8.7	62.30	0.223
20.1	31.65	0.802	20.7	36.60	0.779	9.6	58.29	0.297	10.6	62.32	0.240
25.0	31.68	0.934	25.1	36.63	0.896	15.2	58.35	0.366	15.3	62.39	0.290
29.8	31.70	1.079	30.2	36.67	1.053	20.4	59.43	0.442	20.9	62.46	0.349
35.4	31.74	1.268	35.1	36.71	1.209	25.2	58.51	0.521	25.3	62.54	0.413
39.7	31.76	1.429	37.4	36.73	1.288	30.1	58.60	0.608	29.9	62.63	0.485
44.9	31.78	1.645	44.8	36.77	1.595	34.9	58.70	0.708	34.8	62.74	0.573
0.2	41 99	0.361	0.2	44 84	0.352	39.6	58.82	0.820	39.8	62.86	0.672
84	42.04	0.490	87	44.04	0.476	44.7	58.96	0.950	44.8	63.01	0.771
9.6	42.04	0.513	9.8	44.00	0.486	49.7	59.12	1.102	49.9	63.17	0.889
15.0	42.00	0.623	16.0	44.97	0.605	53.9	59.27	1.245	54.5	63.33	1.017
20.6	42.00	0.739	20.6	45.03	0.705	04	65.05	0.118			
20.0	42.14	0.845	25.0	45.08	0.816	81	65.11	0.167			
29.8	42.25	0.985	30.2	45.15	0.945	94	65.22	0.177			
34.6	42.20	1 1 37	35.2	45 23	1.100	15.1	65.28	0.220			
38 7	42.01	1 277	39.9	45.31	1.257	20.7	65.34	0.272			
43.0	42.07	1 432	45.0	45.33	1 443	25.4	65.42	0.326			
50.0	42.48	1 711	50.0	45.38	1.648	29.8	65.48	0.382			
00.0	12.10	111	00.0	10.00	110 10	34.9	65.58	0.454			
0.2	48.82	0.313	0.6	51.08	0.294	39.6	65.69	0.536			
8.5	48.99	0.432	8.8	51.16	0.401	44.8	65.82	0.631			
10.1	48.91	0.541	9.9	51.17	0.419	50.0	65.96	0.740			
15.7	48.97	0.551	15.6	51.24	0.513	54.4	66.10	0.843			
20.1	49.03	0.637	20.3	51.30	0.606	58.8	66.26	0.956			
25.0	49.10	0.749	25.5	51.38	0.711	63.0	66.44	1.069			
29.8	49.18	0.874	30.1	51.47	0.825	68.5	66.65	1.234			
34.4	49.27	1.005	34.6	51.56	0.949						
39.9	49.37	1.160	39.8	51.67	1.099						
43.6	49.46	1.292	44.8	51.81	1.280						
49.8	49.53	1.507	50.0	51.95	1.424						

were reported in the concentration range from 3.2 wt % to saturated solution by Hunt and Larsen (5). The vapor pressures over a wide temperature range and at various concentrations have no been reported yet.

1.507

In this present work, vapor pressures for ammonium bromide + ammonia and ammonium iodide + ammonia solutions were determined in the concentration ranges 10-65 wt % and 10-75 wt % at various temperatures, respectively. The constants A and B for Antoine's equation were determined from the observed data. Furthermore, these constants are expressed as a fourth-degree function of concentration by using the method of least squares. In addition, the vapor pressures for saturated ammonia solution of ammonium halide were measured at 0-80 °C.

This paper deals with the measurement of vapor pressure for ammonium bromide + ammonia and ammonium iodide + ammonia solutions.

Experimental Section

49.8

Materiais. Ammonium bromide (NH₄Br) and ammonium iodide (NH₄I) from Wako Pure Chemicals Industries Co., Ltd. were of guaranteed reagent grade and were specified as the pure grade having minimum purities of 99.5% and used without

Figure 1. Schematic diagram of the experimental apparatus: A. reaction vessel; B, ammonia vessel; C, magnetic stirrer; D, cathetometer; E, thermocouple; G, digital pressure gauge; H, selective switch, I, recorder; J, Bourdon gauge; K, constant temperature water bath; L, constant temperature air bath; M, ammonia cylinder; N, vacuum pump.

further purification. The powdered crystal was thoroughly dried at 100 °C and stored over silica gel in a desiccator.

Ammonia gas of 99.99% purity was provided by Seitetu Kagaku Co. Ltd.

Experimental Apparatus. The schematic diagram of the experimental apparatus is shown in Figure 1 (6). Two pres-

Table III. Vapor Pressures for the NH₄I-NH₃ System

		observed values						observed values			
temp, °C	concn, wt %	press., MPa	temp, °C	concn, wt %	press., MPa	temp, °C	concn, wt %	press., MPa	temp, °C	concn, wt %	press., MPa
0.2	10.18	0.422	0.4	20.85	0.414	20.9	65.04	0.340	20.6	67.61	0.271
8.6	10.21	0.573	8.9	20.87	0.562	25.1	65.09	0.396	25.0	67.65	0.317
9.9	10.22	0.599	10.1	20.88	0.585	29.8	65.14	0.460	29.6	67.70	0.372
15.9	10.25	0.735	15.8	21.03	0.708	35.4	65.22	0.551	35.0	67.77	0.446
20.2	10.29	0.846	20.2	21.07	0.811	40.4	65.30	0.641	40.1	67.85	0.524
25.0	10.31	0.984	25.1	21.11	0.950	45.0	65.38	0.739	44.9	67.92	0.609
29.9	10.34	1.143	29.9	21.13	1.098	50.4	65.49	0.861	50.8	68.03	0.724
34.7	10.37	1.316	34.9	21.16	1.269	55.6	65.61	1.000	55.7	68.13	0.834
39.9	10.40	1.526	40.1	21.20	1.468	59.1	65.69	1 067	59.3	68 22	0.922
45.0	10.44	1.754	45.2	21.26	1.676	63.7	65.81	1.234	63.5	68.33	1.036
10.0		1	1012	21.20	1.010	65.9	65.86	1 301	68.8	68.45	1 175
0.1	31.45	0.407	0.1	45.03	0.359	71.5	65.94	1 497	72.5	68 56	1 290
9.0	31.47	0.560	8.4	45.06	0.484	11.0	00.04	1.101	12.0	00.00	1.200
10.1	31.48	0.582	9.8	45.07	0.509	0.6	70.89	0.086	0.3	73.40	0.064
15.7	31.53	0.702	15.6	45.10	0.615	8.9	70.93	0.124	8.5	73.43	0.092
20.2	31.57	0.811	20.3	45.13	0.718	10.3	70.94	0.132	10.3	73.44	0.099
25.0	31.60	0.942	24.9	45.16	0.830	15.9	70.98	0.164	15.6	73.47	0.124
29.8	31.63	1.088	29.6	45.19	0.944	20.8	71.01	0.199	20.4	73.50	0.151
35.1	31.67	1.269	34.8	45.24	1.112	25.1	71.05	0.235	24.7	73.54	0.179
40.2	31.69	1.463	39.9	45.28	1.271	29.7	71.10	0.277	29.8	73.57	0.214
45.0	31.72	1.665	45.1	45.34	1.463	34.9	71.19	0.331	35.1	73.62	0.258
						40.3	71.32	0.397	40.0	73.68	0.307
0.6	50.63	0.320	0.5	54.89	0.281	45.8	71.39	0.467	45.1	73.75	0.366
8.8	50.65	0.435	8.8	54.94	0.383	50.9	71.49	0.557	50.7	73.83	0.439
10.3	50.66	0.457	10.1	54.95	0.399	55.7	71.58	0.646	55.7	73.91	0.512
15.8	50.70	0.553	15.9	54.99	0.489	63.9	71.65	0.817	59.3	73.98	0.571
20.5	50.74	0.645	20.9	55.04	0.576	68.8	71.68	0.933	63.9	74.06	0.648
25.1	50.78	0.748	25.0	55.09	0.661	72.9	71.75	1.042	69.2	74.18	0.756
29.7	50.83	0.859	29.5	55.15	0.761	77.7	71.86	1.175	73.8	74.29	0.847
35.1	50.89	1.013	35.0	55.22	0.891	81.4	71.96	1.290	78.3	74.40	0.952
39.8	50.96	1.164	39.9	55.30	1.032	83.6	72.03	1.350	83.4	74.56	1.091
43.2	51.00	1.277	44.8	55.38	1.188						
50.0	51.05	1.561	47.5	55.43	1.277	0.6	75.89	0.046			
0.0	55.04	0.049	0.0	60.04	0.104	8.6	75.92	0.066			
0.3	57.64	0.248	0.6	62.04	0.194	10.1	75.93	0.070			
8.8	57.69	0.339	8.8	62.11	0.267	15.8	75.95	0.090			
10.1	57.71	0.361	10.3	62.14	0.282	20.3	75.97	0.108			
15.7	57.76	0.440	15.6	62.16	0.342	25.4	76.00	0.134			
20.7	57.81	0.519	20.4	62.20	0.404	29.4	76.03	0.157			
24.8	57.85	0.597	24.9	62.25	0.471	34.5	76.07	0.192			
29.6	57.91	0.688	29.5	62.31	0.546	39.5	76.12	0.228			
34.8	57.98	0.808	34.8	62.39	0.646	44.4	76.17	0.271			
39.9	58.06	0.931	40.9	62.47	0.758	50.0	76.24	0.328			
44.8	58.15	1.070	44.9	62.56	0.877	55.1	76.31	0.388			
50.3	58.27	1.255	50.7	62.69	1.029	58.6	76.37	0.433			
51.4	58.28	1.289	55.5	62.79	1.176	63.7	76.45	0.500			
55.1	58.35	1.402	58.9	62.88	1.295	68.6	76.54	0.576			
06	64 80	0.159	0.2	67 47	0 1 9 1	73.3	76.64	0.653			
0.0	61 91	0.100	86	67 59	0.121	77.4	76.73	0.732			
0.0	61 05	0.220	10.1	67 52	0.1.74	82.9	76.87	0.850			
10.0	64.00	0.231	15.6	67.53	0.102						
19.9	04.99	0.284	19.0	01.01	0.227						

Table IV. Dependence of Antoine's Constants on Solute Concentration in the Unsaturated Ammonia Solution of Ammonium Halide

	NH₄E	r-NH ₃ system	NH ₄ I-NH ₃ system			
const	A	В	A	В		
$egin{array}{c} X^4 \ X^3 \ X^2 \ X^1 \ X^0 \end{array}$	$\begin{array}{l} a_4 = 2.32324 \times 10^{-8} \\ a_3 = 2.83431 \times 10^{-6} \\ a_2 = -2.39924 \times 10^{-4} \\ a_1 = 2.77311 \times 10^{-3} \\ a_0 = 9.62756 \end{array}$	$b_4 = 3.94255 \times 10^{-5}$ $b_3 = -2.23307 \times 10^{-3}$ $b_2 = 3.72501 \times 10^{-2}$ $b_1 = -3.43111 \times 10^{-1}$ $b_0 = 994.38$	$\begin{array}{l} a_4 = -9.97644 \times 10^{-9} \\ a_3 = 5.87745 \times 10^{-6} \\ a_2 = -3.98604 \times 10^{-4} \\ a_1 = 4.87144 \times 10^{-3} \\ a_0 = 9.65725 \end{array}$	$b_4 = 1.90584 \times 10^{-5}$ $b_3 = -1.12902 \times 10^{-4}$ $b_2 = -5.96942 \times 10^{-2}$ $b_1 = 1.09151$ $b_0 = 998.79$		
ϵ^{a}		±2.7	±:	2.6		

^a Pressure deviation = $100(P_{obsd} - P_{cald})/P_{obsd}$, %.

sure-resistant glass vessels (A and B) were used in this experiment. One is the 100-mL reaction vessel (A) for measuring the vapor pressure of ammonia solution and the other is 20-mL ammonia vessel (B) for measuring the amount of liquid ammonia. The volumes of these two vessels were measured by using a cathetometer (D) with an accuracy of 0.02% of full

volume. During the experiment, ammonia solution was agitated by a magnetic stirrer (C). The two glass vessels were immersed in two constant temperature water bathes. The temperature control of each bath was maintained by using a refrigeration unit combined with a electric relay unit and thermoregulator. The accuracy of this water bath was better than

Figure 2. Comparison of smoothed vapor pressure calculated by Antoine's equation with Hunt's data at 25 $^{\circ}{\rm C}.$

Figure 3. Comparison of smoothed vapor pressure calculated by Antoine's equation with Hunt's data at 25 $^{\circ}{\rm C}.$

 ± 0.05 °C. Furthermore, these two vessels were covered with a constant temperature air bath (L), and it was kept at 25 ± 1.0 °C during the experiment. The temperature of ammonia solutions was measured with alumel-chlomel thermocouples, calibrated by a standard mercury thermometer, and its accuracy was estimated ± 0.05 °C. The vapor pressure was measured with a strain gauge transducer (G) with an accuracy of ± 0.001 MPa. The concentration of ammonia solution was determined from the volume change of liquid ammonia and mass of solute (ammonium halides) at various conditions.

Experimental Method. Weighed solid ammonium halides $(NH_4Br \text{ or } NH_4I)$ are charged in the reaction vessel (A). The pipe arrangement and the vessels shown in Figure 1 are kept at 80 °C under vacuum for 2 h in order to remove moisture from the system. Then, these vessels are cooled down to room temperature. By chilling the ammonia vessel (B), liquid ammonia is allowed to be introduced into its vessel from the cylinder (M). The amount of liquid ammonia was determined from the difference of liquid level in the ammonia vessel. The correction of concentration for the liquid ammonia phase corresponding to temperature change was carried out by using the equation of state for ammonia gas (7) in each experiment.

Figure 4. Smoothed vapor pressure for the NH₄Br-NH₃ system.

Figure 5. Smoothed vapor pressure for the NH₄I-NH₃ system.

Results and Discussion

Vapor Pressure Measurement for Saturated Ammonia Solution of Ammonium Halide. Table I shows the observed vapor pressures for saturated ammonium bromide + ammonia and ammonium iodide + ammonia solutions. The observed values for ammonium bromide + ammonia solutions have good agreement with Hunt's data (4). However, for ammonium iodide + ammonia solutions, the maximum deviation from Hunt's data was 1.9% in this experiment.

Vapor Pressure Measurement for Unsaturated Ammonia Solution of Ammonium Halide. Tables II and III show observed vapor pressures for ammonium bromide + ammonia and ammonium iodide + ammonia solutions. The comparison of smoothed vapor pressure for these systems at 25 °C with Hunt's data (4) is presented in Figures 2 and 3. These values show a lower value than Hunt's data, but a good agreement at low concentration range was obtained. Furthermore, the following form of Antoine's equation was applied to experimental data in the concentration range from 10 wt % to saturated solution. The Antoine constants (A and B) for each system

were expressed as the fourth-degree function of ammonium halide concentration and these constants were are in Table IV.

$$\log P = A - B/(C+t) \tag{1}$$

$$A = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4$$
(2)

$$B = b_0 + b_1 X + b_2 X^2 + b_3 X^3 + b_4 X^4$$
(3)

$$C = 247.885$$
 (4)

Figures 4 and 5 show the smoothed vapor pressures calculated by using these equations. These smoothed vapor pressures agreed with observed ones with an accuracy of $\pm 2.7\%$ in the measured concentration range.

Acknowledgment

We express our gratitude to Mr. A. Shimomura for his experimental work and to Mr. A. Kurata for his useful suggestions.

Glossary

a,	constants for eq 3
A	constant for Antoine's equation
b.	constants for eq.4

constants for eq 4

R constant for Antoine's equation С constant for Antoine's equation Ρ vapor pressure. Pa temperature, °C t X weight percent concentration of ammonium halide

Greek Letter

deviation. % f

Registry No. NH₃, 7664-41-7; NH₄Br, 12124-97-9; NH₄I, 12027-06-4.

Literature Cited

- Yoneyama, N.; Hagiwara, S. Solar Energy **1979**, *5*, 4. Fujiwara, I.; Sato, S. *Reito* **1985**, *60*, 24. (1)
- (2)
- Mclinden, M. O.; Klein, S. A. Solar Energy 1983, 31, 473.
- Toyoda, T.; Kurata, A.; Sanga, S. Preprints of the 48th Annual Meeting of the Society of Chemical Engineering, Japan, Kyoto, 1983; p 43. Hunt, H.; Larsen, W. E. J. Phys. Chem. 1934, 38, 801. Yamamoto, H.; Tokunaga, J.; Sanga, S. J. Chem. Eng. Data 1986,
- 31, 283
- Meyer, C. H.; Jessup, R. S. *Refrig. Eng.* **1924**, *11*, 348. Dean, J. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill: New York, 1973. (8)

Received October 22, 1987. Accepted March 16, 1988.

NEW COMPOUNDS

Synthesis and Insecticidal Activity of Some 2,5-(Fluoroalkoxyphenyl)-1,3,4-oxadiazoles and Their **N**,**N**'-Dibenzoylhydrazine Precursors

John P. Idoux* and Kathleen S. Glbbs-Rein

Department of Chemistry, Lamar University, Beaumont, Texas 77710

John T. Gupton and Glenn N. Cunningham

Department of Chemistry, University of Central Florida, Orlando, Florida 32816

The synthesis and IR/NMR characterization of 10 2,5-(fluoroalkoxyphenyl)-1,3,4-oxadiazoles and 15 fluoroalkoxydiacylhydrazines are described. Five of the oxadiazoles and 11 of the diacylhydrazines have been screened for insecticidal activity against Drosophila melanogaster.

In view of the biological activity properties and the variety of other important diverse uses of many organofluoro materials (1, 2) and because of our continuing interest (3, 4) in the synthetic methodology of such materials, we report here the syntheses of some 2,5-(fluoroalkoxyphenyl)-1,3,4-oxadiazoles (I) and of their N, N'-dibenzoylhydrazine precursors (II). A preliminary investigation of the insecticidal activity of these compounds is also reported.

Unsymmetrical N, N'-dibenzoylhydrazines (IIa-i, G₁ = H or haloalkoxy, G_2 = haloalkoxy; G_3 = 2-Cl, G_4 = 4-Cl; Scheme I) were prepared by reaction of the corresponding substituted benzhydrazide with 2,4-dichlorobenzoyl chloride. The required benzhydrazides were obtained by reaction of hydrazine hydrate

with the appropriately substituted methyl benzoates as described previously by Smith (5) and the requisite methyl fluo-